Allan Gut

OK
Customers Also Bought Items By
Books By Allan Gut
Like its predecessor, this book starts from the premise that, rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by a thorough treatment of the three main subjects in probability theory: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales. The new edition is comprehensively updated, including some new material as well as around a dozen new references.
This is the only book that gives a rigorous and comprehensive treatment with lots of examples, exercises, remarks on this particular level between the standard first undergraduate course and the first graduate course based on measure theory.
There is no competitor to this book.
The book can be used in classrooms as well as for self-study.
This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.
Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Examples are sequential analysis, queuing theory, storage and inventory theory, insurance risk theory, reliability theory, and the theory of contours. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used to prove limit theorems for renewal counting processes, first passage time processes, and certain two-dimenstional random walks, and to how these results are useful in various applications.
This second edition offers updated content and an outlook on further results, extensions and generalizations. A new chapter examines nonlinear renewal processes in order to present the analagous theory for perturbed random walks, modeled as a random walk plus "noise."
Students are assumed to have taken a first course in probability, though no knowledge of measure theory is assumed. Throughout, the presentation is thorough and includes many examples that are discussed in detail. Thus, students considering more advanced research in probability will benefit from this wide-ranging survey of the subject that provides them with a foretaste of the subject's many treasures.