Digital List Price: | CDN$ 49.99 |
Kindle Price: | CDN$ 39.99 Save CDN$ 10.00 (20%) |
includes free international wireless delivery via Amazon Whispernet |

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet or computer – no Kindle device required. Learn more
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera, scan the code below and download the Kindle app.
Praktische Statistik für Data Scientists: 50+ essenzielle Konzepte mit R und Python (Animals) (German Edition) Kindle Edition
Amazon Price | New from | Used from |
- Kindle Edition
$39.99 Read with Our Free App - Paperback
$73.56
Statistische Konzepte aus der Perspektive von Data Scientists erläutert
- Das Buch stellt die Verbindung zwischen nützlichen statistischen Prinzipien und der heutigen Datenanalyse-Praxis her
- Ermöglicht Data Scientists, ihr Wissen über Statistik auf ein neues Level zu bringen
- Übersetzung der 2. Auflage des US-Bestsellers mit Beispielen in Python und R
Statistische Methoden sind ein zentraler Bestandteil der Arbeit mit Daten, doch nur wenige Data Scientists haben eine formale statistische Ausbildung. In Kursen und Büchern über die Grundlagen der Statistik wird das Thema aber selten aus der Sicht von Data Scientists behandelt. Viele stellen daher fest, dass ihnen eine tiefere statistische Perspektive auf ihre Daten fehlt.
Dieses praxisorientierte Handbuch mit zahlreichen Beispielen in Python und R erklärt Ihnen, wie Sie verschiedene statistische Methoden speziell in den Datenwissenschaften anwenden. Es zeigt Ihnen auch, wie Sie den falschen Gebrauch von statistischen Methoden vermeiden können, und gibt Ratschläge, welche statistischen Konzepte für die Datenwissenschaften besonders relevant sind. Wenn Sie mit R oder Python vertraut sind, ermöglicht diese zugängliche, gut lesbare Referenz es Ihnen, Ihr statistisches Wissen für die Praxis deutlich auszubauen.
- LanguageGerman
- PublisherO'Reilly
- Publication dateMarch 29 2021
- File size26111 KB
Product details
- ASIN : B093XT3FDH
- Publisher : O'Reilly; Übersetzung der 2. edition (March 29 2021)
- Language : German
- File size : 26111 KB
- Text-to-Speech : Enabled
- Screen Reader : Supported
- Enhanced typesetting : Enabled
- X-Ray : Not Enabled
- Word Wise : Not Enabled
- Sticky notes : On Kindle Scribe
- Print length : 377 pages
- Customer Reviews:
About the author

Dr. Peter Gedeck holds a Ph.D. in chemistry. He worked for twenty years as a computational chemist in drug discovery at Novartis in the United Kingdom, Switzerland, and Singapore. His research interests include the application of statistical and machine learning methods to problems in drug discovery. He is a scientist in the research informatics team at Collaborative Drug Discovery, which offers the pharmaceutical industry cloud-based software to manage the huge amount of data involved in the drug discovery process.
Peter’s specialty is the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. His scientific work is published in more than 50 peer reviewed articles.
Peter also teaches at University of Virginia's School of Data Science and gives a series of courses on Predictive Analytics at Statistics.com.
Customer reviews
Top reviews from other countries
