Francois Chollet

Something went wrong. Please try your request again later.
Follow to get new release updates, special offers (including promotional offers) and improved recommendations.
OK
Customers Also Bought Items By
1 11 1
Author updates
Books By Francois Chollet
Deep Learning with Python
30-Nov-2017
$46.99
$65.99
Summary
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications.
About the Book
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.
What's Inside
About the Reader
Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required.
About the Author
François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.
Table of Contents
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications.
About the Book
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.
What's Inside
- Deep learning from first principles
- Setting up your own deep-learning environment
- Image-classification models
- Deep learning for text and sequences
- Neural style transfer, text generation, and image generation
About the Reader
Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required.
About the Author
François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.
Table of Contents
- What is deep learning?
- Before we begin: the mathematical building blocks of neural networks
- Getting started with neural networks
- Fundamentals of machine learning
- Deep learning for computer vision
- Deep learning for text and sequences
- Advanced deep-learning best practices
- Generative deep learning
- Conclusions
- appendix A - Installing Keras and its dependencies on Ubuntu
- appendix B - Running Jupyter notebooks on an EC2 GPU instance
PART 1 - FUNDAMENTALS OF DEEP LEARNING
PART 2 - DEEP LEARNING IN PRACTICE
Deep Learning with R, Second Edition
13-Sep-2022
$59.99
Deep learning from the ground up using R and the powerful Keras library!
In Deep Learning with R, Second Edition you will learn:
Deep learning from first principles
Image classification and image segmentation
Time series forecasting
Text classification and machine translation
Text generation, neural style transfer, and image generation
Deep Learning with R, Second Edition shows you how to put deep learning into action. It’s based on the revised new edition of François Chollet’s bestselling Deep Learning with Python. All code and examples have been expertly translated to the R language by Tomasz Kalinowski, who maintains the Keras and Tensorflow R packages at RStudio. Novices and experienced ML practitioners will love the expert insights, practical techniques, and important theory for building neural networks.
About the technology
Deep learning has become essential knowledge for data scientists, researchers, and software developers. The R language APIs for Keras and TensorFlow put deep learning within reach for all R users, even if they have no experience with advanced machine learning or neural networks. This book shows you how to get started on core DL tasks like computer vision, natural language processing, and more using R.
About the book
Deep Learning with R, Second Edition is a hands-on guide to deep learning using the R language. As you move through this book, you’ll quickly lock in the foundational ideas of deep learning. The intuitive explanations, crisp illustrations, and clear examples guide you through core DL skills like image processing and text manipulation, and even advanced features like transformers. This revised and expanded new edition is adapted from Deep Learning with Python, Second Edition by François Chollet, the creator of the Keras library.
What's inside
Image classification and image segmentation
Time series forecasting
Text classification and machine translation
Text generation, neural style transfer, and image generation
About the reader
For readers with intermediate R skills. No previous experience with Keras, TensorFlow, or deep learning is required.
About the author
François Chollet is a software engineer at Google and creator of Keras. Tomasz Kalinowski is a software engineer at RStudio and maintainer of the Keras and Tensorflow R packages. J.J. Allaire is the founder of RStudio, and the author of the first edition of this book.
Table of Contents
1 What is deep learning?
2 The mathematical building blocks of neural networks
3 Introduction to Keras and TensorFlow
4 Getting started with neural networks: Classification and regression
5 Fundamentals of machine learning
6 The universal workflow of machine learning
7 Working with Keras: A deep dive
8 Introduction to deep learning for computer vision
9 Advanced deep learning for computer vision
10 Deep learning for time series
11 Deep learning for text
12 Generative deep learning
13 Best practices for the real world
14 Conclusions
In Deep Learning with R, Second Edition you will learn:
Deep learning from first principles
Image classification and image segmentation
Time series forecasting
Text classification and machine translation
Text generation, neural style transfer, and image generation
Deep Learning with R, Second Edition shows you how to put deep learning into action. It’s based on the revised new edition of François Chollet’s bestselling Deep Learning with Python. All code and examples have been expertly translated to the R language by Tomasz Kalinowski, who maintains the Keras and Tensorflow R packages at RStudio. Novices and experienced ML practitioners will love the expert insights, practical techniques, and important theory for building neural networks.
About the technology
Deep learning has become essential knowledge for data scientists, researchers, and software developers. The R language APIs for Keras and TensorFlow put deep learning within reach for all R users, even if they have no experience with advanced machine learning or neural networks. This book shows you how to get started on core DL tasks like computer vision, natural language processing, and more using R.
About the book
Deep Learning with R, Second Edition is a hands-on guide to deep learning using the R language. As you move through this book, you’ll quickly lock in the foundational ideas of deep learning. The intuitive explanations, crisp illustrations, and clear examples guide you through core DL skills like image processing and text manipulation, and even advanced features like transformers. This revised and expanded new edition is adapted from Deep Learning with Python, Second Edition by François Chollet, the creator of the Keras library.
What's inside
Image classification and image segmentation
Time series forecasting
Text classification and machine translation
Text generation, neural style transfer, and image generation
About the reader
For readers with intermediate R skills. No previous experience with Keras, TensorFlow, or deep learning is required.
About the author
François Chollet is a software engineer at Google and creator of Keras. Tomasz Kalinowski is a software engineer at RStudio and maintainer of the Keras and Tensorflow R packages. J.J. Allaire is the founder of RStudio, and the author of the first edition of this book.
Table of Contents
1 What is deep learning?
2 The mathematical building blocks of neural networks
3 Introduction to Keras and TensorFlow
4 Getting started with neural networks: Classification and regression
5 Fundamentals of machine learning
6 The universal workflow of machine learning
7 Working with Keras: A deep dive
8 Introduction to deep learning for computer vision
9 Advanced deep learning for computer vision
10 Deep learning for time series
11 Deep learning for text
12 Generative deep learning
13 Best practices for the real world
14 Conclusions